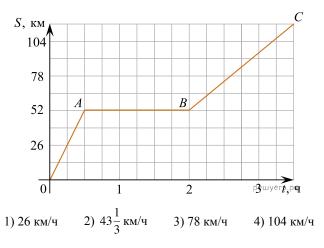
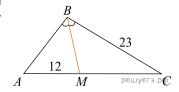

Централизованное тестирование по математике, 2017


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

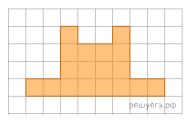
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Укажите номера прямоугольников, изображенных на рисунках 1-5, при вращении которых вокруг стороны AD получается цилиндр, осевым сечением которого является квадрат.

- 2. Выразите 737 см 8 мм в метрах с точностью до сотых.
- 1) 0,74 m 2) 7,37 m 3) 7,378 m 4) 7,38 m 5) 73,78 m
- **3.** На рисунке изображен график движения автомобиля из пункта O в пункт C. Скорость движения автомобиля на участке BC (в км/ч) равна:



5) 60 км/ч


- **4.** Выразите *a* из равенства $\frac{3}{2b+1} = \frac{6}{a-b}$.
- 1) a = 5b + 2 2) a = 5b 2 3) a = 15b 6 4) a = 15b + 6 5) a = 3b + 1
- **5.** Значение выражения $8\sqrt{3} + \frac{1}{8}\sqrt{192}$ равно:
- 1) $16\sqrt{3}$ 2) $\sqrt{195}$ 3) $\frac{65\sqrt{195}}{8}$ 4) $\frac{6\sqrt{3}}{8}$ 5) $9\sqrt{3}$
- **6.** Последовательность (a_n) задана формулой n-ого члена $a_n = 3n^2 8n + 9$. Второй член этой последовательности равен:
 - 1) 12
- 2) 16
- 3) 5
- 4) 16
- 7. Значение выражения $7\cos^2 34^\circ + 10\sin 30^\circ + 7\sin^2 34^\circ$ равно:
 - 1) 12
- 2) 17
- 3) 24
- 4) $7 + 10\sqrt{3}$
- 5) $14 + 5\sqrt{3}$

5)6

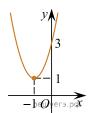
- 8. Среди данных утверждений укажите номер верного.
 - 1) Число 451 кратно числу 5.
- 2) Число 9 кратно числу 35.
- 3) Число 2 кратно числу 14.
- 4) Число 116 кратно числу 1.
- 5) Число 43 кратно числу 0.
- 9. Дан треугольник АВС, в котором AC = 32. Используя данные рисунка, найдите длину стороны AB треугольника ABC.

- 1) 10,2
- 2) 14,6
- 3) 13,8
- 4) 13,5
- 5) 10,4
- **10.** Результат упрощения выражения $\sqrt{(2x-4,6)^2} + 4,6$ при -1 < x < 1имеет вид:
 - 1) 9.2 2x
- 2) -2x 9
- 3) 2x + 9.2
- 4) 2x
- 11. На клетчатой бумаге с клетками размером 1 см х 1 см изображена фигура. Известно, что площадь этой фигуры составляет 28% площади некоторой трапеции. Найдите площадь трапеции в квадратных сантиметрах.

- 1) 504 cm² 2) $64\frac{2}{7}$ cm² 3) 35 cm² 4) $72\frac{3}{4}$ cm²

5)
$$155\frac{5}{9}$$
 cm²

12. Определите остроугольный треугольник, зная длины его сторон (см. табл.)


Треугольник	Длины сторон треугольника
ΔΑΒC	8 см; 15 см; 17 см
ΔMNK	4 см; 5 см; 8 см
ΔBDC	3 см; 4 см; 5 см
ΔFBC	7 см; 8 см; 9 см
ΔCDE	5 см; 11 см; 13 см

- 1) *△ABC*
- 2) $\triangle MNK$ 3) $\triangle BDC$ 4) $\triangle FBC$
- 5) *△CDE*

13. Купили m ручек по цене 2 руб. 3 коп. за штуку и 178 тетрадей по цене aкоп. за штуку. Составьте выражение, которое определяет, сколько рублей стоит покупка.

1)
$$2,03m + 178a$$
 2) $2,03m + 1,78a$ 3) $2,3m + 1,78a$
4) $2,3m + 17,8a$ 5) $2,03m + 17,8a$

14. Среди предложенный уравнений укажите номер уравнения, графиком которого является парабола, изображенная на рисунке:

1)
$$y = x^2 + 4x + 3$$
 2) $y = x^2 - 4x - 3$ 3) $y = 2x^2 + 4x + 3$
4) $y = 2x^2 + 4x - 3$ 5) $y = 2x^2 - 4x + 3$

- **15.** $ABCDA_1B_1C_1D_1$ куб. Точки M и N середины ребер AD и DC соответственно, $K \in A_1D_1$, $KA_1 : KD_1 = 1 : 3$ (см. рис.). Сечением куба плоскостью, проходящей через точки M, N и K, является:
 - 1) восьмиугольник 2) треугольник 3) четырехугольник 4) пятиугольник 5) шестиугольник
- 16. Найдите сумму наименьшего и наибольшего целых решений двойного неравенства -448,9 < 2,9 + 9x < 23,6.

 - 1) -52 2) -47 3) -49 4) -48
- 5) 53

17. Через точку A высоты SO конуса проведена плоскость, параллельная основанию. Определите, во сколько раз площадь основания конуса больше площади полученного сечения, если SA:AO=2:3.

1)
$$6\frac{1}{4}$$
 2) $7\frac{1}{4}$ 3) $2\frac{1}{4}$ 4) $1\frac{1}{2}$ 5) $2\frac{1}{2}$

18. Укажите (в градусах) наименьший положительный корень уравнения $cos(6x - 72^{\circ}) = \frac{\sqrt{3}}{2}.$ 1) 5° 2) 102° 3) 17° 4) 42° 5) 7°

19. Для начала каждого из предложений А-В подберите его окончание 1-6 так, чтобы получилось верное утверждение.

НАЧАЛО ПРЕДЛОЖЕНИЯ

- А) Окружность с центром в точке (-8; -2) и радиусом 4 задается уравне-
- Б) Уравнением прямой, проходящей через точку (-8; 2) и параллельной прямой $y = \frac{1}{4}x$, имеет вид:
- График обратной пропорциональности, проходящий через точку $\left(\frac{1}{2}; -\frac{1}{2}\right)$, задается уравнением:

ОКОНЧАНИЕ ПРЕДЛОЖЕНИЯ

- 1) xy = 2
- 2) $(x-8)^2 + (y-2)^2 = 4$

3)
$$-\frac{1}{4}x + y = 4$$

- 4) $(x+8)^2 + (y+2)^2 = 16$ 5) 4xy+1=0

6)
$$\frac{1}{4}x + y = 2$$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. *Например:* **A1Б1В4**.

- 20. Конфеты в коробки упаковываются рядами, причем количество конфет в каждом ряду на 4 больше, чем количество рядов. Дизайн коробки изменили, при этом добавили 2 ряда, а в каждом ряду добавили по 1 конфете. В результате количество конфет в коробке увеличилось на 25. Сколько конфет упаковывалось в коробку первоначально?
- **21.** Известно, что при a, равном -2 и 4, значение выражения $4a^3 + 3a^2 - ab + c$ равно нулю. Найдите значение выражения b + c.
- 22. Найдите произведение корней (корень, если он единственный) уравнения $x^2 - 5x - 3 = 4\sqrt{x^2 - 5x + 9}$
- 23. В параллелограмме с острым углом 45° точка пересения диагоналей удалена от прямых, содержащих неравные стороны, на расстояния $\frac{7\sqrt{2}}{2}$ и 2. Найдите площадь параллелограмма.
- **24.** Пусть — наибольший $\log_2^2\left(\frac{x}{32}\right) + 4\log_2 x - 52 = 0$, тогда значение выражения $7\sqrt[3]{x_0}$ равно ...
- **25.** Решите неравенство $\left(\frac{1}{5-\sqrt{24}}\right)^{x+6} \geqslant \left(5-\sqrt{24}\right)^{\frac{4x+25}{x+4}}$. В ответе запишите сумму целых решений, принадлежащих промежутку [-20; -2].
- 26. Найдите увеличенное в 9 раз произведение абсцисс точек пересечения прямой у = 12 и графика нечетной функции, которая определена на множестве $(-\infty;0) \cup (0;+\infty)$ и при x > 0 задается формулой $y = 2^{3x-8} - 20$.
- 27. Найдите площадь полной поверхности прямой треугольной призмы, описанной около шара, если площадь основания призмы равна 7,5.
- 28. Найдите произведение наибольшего целого решения на количество целых решений неравенства $\frac{16}{6+|24-x|} > |24-x|$.

- **29.** Первые члены арифметической и геометрической прогрессии одинаковы и равны 1, третьи члены также одинаковы, а вторые отличаются на 18. Найдите шестой член арифметической прогрессии, если все члены обеих прогрессий положительны.
- **30.** $ABCDA_1B_1C_1D_1$ прямая четырехугольная призма, объем которой равен 960. Основанием призмы является параллелограмм ABCD. Точки M и N принадлежат ребрам A_1D_1 и C_1D_1 , так что $A_1M:A_1D_1=1:2$, $D_1N:NC_1=2:1$. Отрезки A_1N и B_1M пересекаются в точке K. Найдите объем пирамиды SB_1KNC_1 , если $S\in B_1D$ и $B_1S:SD=3:1$.